[课 题] § 12.2 一元二次方程的解法( 1 )——直接开平方法 [教学目的] 使学生掌握直接开平方法,并会解某些一元二次方程;使学生会解(x-a) 2 =b(b≥0)型的方程,为进一步学习公式法作好准备。[教学重点] 掌握直接开平方法,并会解某些一元二次方程。[教学难点] 会解(x-a) 2 =b(b≥0)型的方程。[教学关键] 会解(x-a) 2 =b(b≥0)型的方程,为进一步学习公式法作好准备。[教学用具] [教学形式] 讲练结合法。[教学用时] 4′×1 [ 教学过程 ] [ 复习提问 ] 1、什么叫做整式方程?(方程两边都是关于未知数的整式,叫做整式方程。)2、什么样的方程叫做一元一次方程?什么样的方程叫做一元二次方程?(在整式方程中,只含一个未知数,并且未知数的最高次数是1,这样的方程叫做一元一次方程;在整式方程中,只含一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程。)3、说明一元一次方程与一元二次方程的相同点和不同点?(都是整式方程,并且都含有一个未知数,这是它们的相同点;它们的不同点是未知数的次数,一个是一次,一个是二次。)4、一元二次方程的一般形式是什么?其中a应具备什么条件?(一元二次方程的一般形式是:ax 2 +bx+=0,其中a应不等于零。因为a=0,则方程ax 2 +bx+=0就不是一元二次方程了。)、x 2 -4=0是一元二次方程吗?其中二次项的系数、一次项的系数、常数项各是什么?(是。二次项系数是1、一次项系数是0、常数项是-4。) [ 讲解新课 ] 我们来解方程:x 2 -4=0。先移项,得:x 2 =4。(这里,一个数x的平方等于4,这个数x叫做4的什么?——这个数x叫做4的平方根或二次方根;一个正数有几个平方根?——一个正数有两个平方根,它们互为相反数;求一个数的平方根的运算叫做什么?——叫做开平方。)上面的x 2 =4,实际上就是求4的平方根。因此,x=± 即,x 1 =2,x 2 =-2。讲(或提问)到此,指出 : 这种解某些一元二次方程的方法叫做 直接开平方法 。提问:用直接开平方法解下列方程:1、x 2 -144=0; 2、x 2 -3=0;3、x 2 +16=0; 4、x 2 =0。(1、x 1 =12,x 2 =-12;2、x 1 = ,x 2 =- ;3、无解——负数没有平方根;4、x=0——0有一个平方根,它是0本身)。 例 2 解方程:(x+3) 2 =2。说明与分析:此例要求解出方程的根,同时通过此例的学习也为进一步解公式法作准备。实际上,我们将用此例以及类似的题目推导出一元二次方程的另一解法——配方法。可以看出,原方程中x+3是2的平方根,解:x+3=± 即:x 1 =-3+ ,或x 2 =-3- 。∴ x 1 =-3+ ,x 2 =-3- 。提问:解下列方程:1、(x+4) 2 =3; 2、(3x+1) 2 =-3。(1、x 1 =-4+ ,x 2 =-4- 。2、无解。) [ 课堂练习 ] 教科书第7页练习1,2题。 [ 课堂小结 ] 直接开平方法可解下列类型的一元二次方程:x 2 =b(b≥0);(x-a) 2 =b(b≥0)。根据平方根的定义,要特别注意:由于负数没有平方根,所以,上列两式中的b≥0,当b<0时,方程无解。 [ 课外作业] 教科书第1习题12.1A组第1,2题。对学有余力的学生可做B组第1题。 [ 板书设计] 课题: 例题: 辅助板书: [ 课后记]
通过本节课的学习,学生已掌握了一元二次方程的解法之一——直接开平方法,并能熟练地求出能应用直接开平方法解的一元二次方程的两个根,同时掌握了一元二次方程的解题步骤及书写格式。
本文发布于:2023-02-10 06:32:11,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/737331.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |