两数N次方差的一般计算公式

更新时间:2023-02-10 05:18:48 阅读: 评论:0

引言

    在数学的学习中,有时候会碰到求两数的平方差的题目,在六年级的奥数学习中,通过面积和体积的计算公式,发现了相邻两数二次方和三次方的计算规律,后来我把它推演到不相邻两个数的N次方,发现同样有效。就如同二次方差用于计算面积差,三次方的差用于计算体积差一样,也许N次方的差在将来用于计算N维度的差。

推导过程:

一、 由二次方看

首先,我们知道两个数的二次方的计算方法

已知一个数A的平方,求这个数相邻数的平方。

解答:如图,一个数A的平方如图中有色部分,即A^2;这个数的相邻数的平方可以看图中的白色方框包含的部分和绿色边框包含的部分,他们分别是:

5^2-4^2=5^(2-1)+4^(2-1)=5+4=9

几何上可以理解为:图中白色框的一边5与另一边4相加

4^2-3^2=4^(2-1)+3^(2-1)=4+3=7

几何上可以理解为:图中绿色框的一边3与另一边4的相加

740)this.width=740" border=undefined>

所以对于相邻两数的二次方的差计算的一般公式如下:

(A+1)^2-A^2=(A+1)^(2-1)*A^(2-2)+(A+1)^(2-2)*A^(2-1)

对于最外边白色框与里边绿色框的平方差,可通过图形看到

(A+1)^2-(A-1)^2=(A+1)^(2-1)* (A-1)^(2-2)*2+(A+1)^(2-2)*(A-1)^(2-1)*2

=[(A+1)^(2-1)* (A-1)^(2-2)+(A+1)^(2-2)*(A-1)^(2-1)]*2

几何上理解为:

长方向的A+1与[(A+1)-(A-1)]=2的面积、宽方向上A-1与[(A+1)-(A-1)]=2的面积,两块面积的和。

同理,推广到两个不相邻数P与Q的平方差,可表示为:

P^2-Q^2=[P^(2-1)*Q^(2-2)+P^(2-2)*Q^(2-1)]*(P-Q)

二、再看三次方的情况

我们看相邻两个数的三次方的差的计算方法:

已知一个数A的三次方,求这个数相邻数的三次方。

设A的相邻数为A+1和A-1,则他们的三次方可以用一个三维立体图形形象地表示,如右图:

(A+1)^3-A^3=(A+1)^(3-1)*A^(3-3)+(A+1)^(3-2)*A^(3-2)+(A+1)^(3-3)*A^(3-1)

A^3-(A-1)^3=A^(3-1)*(A-1)^(3-3)+A^(3-2)*(A-1)^(3-2)+A^(3-3)*(A-1)^(3-1)

几何上的理解是:

长方向的A与高方向上的A厚度为1的体积、宽方向上的(A-1)与高方向上的A厚度为1的体积、长方向上的(A-1)与宽方向上的(A-1)厚度为1的体积,这三块体积之和。

740)this.width=740" border=undefined>

对于不相邻两个数P、Q的三次方的差,可以看作是厚度为(P-Q)的形成体积的体积差,一般公式为:

P^3-Q^3=[P^(3-1)*Q^(3-3)+P^(3-2)*Q^(3-2)+P^(3-3)*Q^(3-1)]*(P-Q)

三、推广到四次方

同样,可以知道相邻两个数的四次方之差公式:

(A+1)^4-A^4=(A+1)^(4-1)*A^(4-4)+(A+1)^(4-2)*A^(4-3)+(A+1)^(4-3)*A^(4-2)+(A+1)^(4-4)*A^(4-1)

不相邻两数的四次方之差的一般公式:

P^4-Q^4=[P^(4-1)*Q^(4-4)+P^(4-2)*Q^(4-3)+P^(4-3)*Q^(4-2)+P^(4-4)*Q^(4-1)]*(P-Q)

四、结论:两个数的n次方之差计算方法,

综上,我们可以由简单而复杂,推而广之,得出

相邻两个数的n次方的差的一般公式:

P^n - Q^n=P^(n-1)*Q^(n-n)+P^(n-2)*Q^1+ P^(n-3)*Q^2+ P^(n-4)*Q^3+……+ P^(n-n)*Q^(n-1)

不相邻两个数的n次方的差的一般公式:

P^n - Q^n=[P^(n-1)*Q^(n-n)+P^(n-2)*Q^1+ P^(n-3)*Q^2+ P^(n-4)*Q^3+……+ P^(n-n)*Q^(n-1)]*(P-Q)

五、验证:

⑴ 相邻两数的N次方的差的计算验证

3^4-2^4=81-16=65 3^4-2^4=3^3*2^0 + 3^2*2^1 + 3^1*2^2 + 3^0*2^3=65 6^6-5^6=46656-15625=31031 6^6-5^6=6^5*5^0 + 6^4*5^1 + 6^3*5^2 + 6^2*5^3 + 6^1*5^4 + 6^0*5^5=31031

⑵不相邻两数的N次方的计算验证

10^5-5^5=10000-3125=96875 10^5-5^5=[10*10*10*10*1+10*10*10*5+10*10*5*5+10*5*5*5+5*5*5*5]*5 =[10000+5000+2500+1250+625]*5=19375*5=96875 11^6-9^6=1771561-531441=1240120 11^6-9^6=[11^5*1+11^4*9+11^3*9^2+11^2*9^3+11^1*9^4+1*9^5]*(11-9) =[161051+131769+107811+88209+72171+59049]*2 =620060*2=1240120

参考文献:

1. 人大附中刘彭芝主编,2004年,《仁华学校奥林匹克数学课本》(小学六年级);

2. 科学出版社,《现代小学数学》(六年级上册)。

指导教师:周睃  

学而思教育版权所有,未经许可,请勿转载。

本文发布于:2023-02-10 05:18:48,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/726915.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:方差   计算公式
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图