【题目】图中两个正方形的面积相差400平方厘米,则圆A与圆B的面积相差多少?
【答案】314cm2
【解析】
本题可以用假设法作答,可以设大圆半径为R,小圆半径为r,由此得出:SA-SB=πR2-πr2=π(R2-r2),S大正方形-S小正方形=2R×2R-2r×2r=4(R2-r2),因为题中已经告诉了两个正方形的面积之差,所以4(R2-r2)=400,R2-r2=100,然后代入π(R2-r2)作答即可。
假设大圆半径为R,小圆半径为r。
SA-SB=πR2-πr2=π(R2-r2)
因为S大正方形-S小正方形=2R×2R-2r×2r=4(R2-r2)=400,
所以R2-r2=100,
所以圆A与圆B的面积相差3.14×100=314(cm2)
本文发布于:2023-02-09 15:22:42,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/692826.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |