题文
已知定义在上的函数是偶函数,且时, 。(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件 题型:未知 难度:其他题型答案
(1)(2)当,取值的集合为,当,取值的集合为;(3)解析
(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解 试题解析:解:(1)函数是偶函数,当时,当时 (4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为 (6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时, (4)考点
据考高分专家说,试题“已知定义在上的函数是偶函数,且时, 。(.....”主要考查你对 [函数的定义域、值域 ]考点的理解。 函数的定义域、值域定义域、值域的概念:
自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。
1、求函数定义域的常用方法有:
(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;(2)根据实际问题的要求确定自变量的范围;(3)根据相关解析式的定义域来确定所求函数自变量的范围;(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足 的x的集合。设y=f[g(x)]的定义域为P,则 。
3、求函数值域的方法:
(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如 (a,b为非零常数)的函数;(2)利用函数的图象即数形结合的方法;(3)利用均值不等式;(4)利用判别式;(5)利用换元法(如三角换元);(6)分离法:分离常数与分离参数两种形式;(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)
本文发布于:2023-02-05 06:44:51,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/536033.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |