题文
已知函数的定义域为,对于任意的,都有,且当时,,若.(1)求证:为奇函数;(2)求证:是上的减函数;(3)求函数在区间上的值域. 题型:未知 难度:其他题型答案
(1)证明:见解析;(2)证明:见解析;(3)函数在区间上的值域为.解析
(1)赋值求出,即证出为奇函数;(2)利用函数单调性定义和奇函数证出是上的减函数;(3)由(2)得函数在区间上的最大值是;最小值是.(1)证明:的定义域为,令,则, 令,则,即.,故为奇函数. 4分(2)证明:任取且,则 又,,,即.故是上的减函数. 8分(3)解:又为奇函数,由(2)知是上的减函数,所以当时,取得最大值,最大值为;当时,取得最小值,最小值为. 11分所以函数在区间上的值域为. 12分考点
据考高分专家说,试题“已知函数的定义域为,对于任意的,都有,且.....”主要考查你对 [函数的定义域、值域 ]考点的理解。 函数的定义域、值域定义域、值域的概念:
自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。
1、求函数定义域的常用方法有:
(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;(2)根据实际问题的要求确定自变量的范围;(3)根据相关解析式的定义域来确定所求函数自变量的范围;(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足 的x的集合。设y=f[g(x)]的定义域为P,则 。
3、求函数值域的方法:
(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如 (a,b为非零常数)的函数;(2)利用函数的图象即数形结合的方法;(3)利用均值不等式;(4)利用判别式;(5)利用换元法(如三角换元);(6)分离法:分离常数与分离参数两种形式;(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)
本文发布于:2023-02-05 06:43:57,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/535760.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |