题文
定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为( )A.6B.7C.8D.9 题型:未知 难度:其他题型答案
f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1,f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1,当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为0>0,∴x∈∅;当x∈[2,3)时,[x]=2,[x]-1>0,上式可化为x<[x]+1=3,∴当x∈[0,3)时,不等式f(x)<g(x)解集区间的长度为d=3-2=1;同理可得,当x∈[3,4)时,不等式f(x)<g(x)解集区间的长度为d=4-2=2;∵不等式f(x)<g(x)解集区间的长度为5,∴k-2=5,∴k=7.故选B.解析
该题暂无解析
考点
据考高分专家说,试题“定义区间(a,b),[a,b),(a,b.....”主要考查你对 [函数的定义域、值域 ]考点的理解。 函数的定义域、值域定义域、值域的概念:
自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。
1、求函数定义域的常用方法有:
(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;(2)根据实际问题的要求确定自变量的范围;(3)根据相关解析式的定义域来确定所求函数自变量的范围;(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足 的x的集合。设y=f[g(x)]的定义域为P,则 。
3、求函数值域的方法:
(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如 (a,b为非零常数)的函数;(2)利用函数的图象即数形结合的方法;(3)利用均值不等式;(4)利用判别式;(5)利用换元法(如三角换元);(6)分离法:分离常数与分离参数两种形式;(7)利用复合函数的单调性。(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)
本文发布于:2023-02-05 05:34:34,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/516469.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |