若非零函数对任意实数均有,且当时求证:;求证:为R上的减函数;当时, 对恒有,求实数的取值范围.

更新时间:2023-02-05 03:40:02 阅读:11 评论:0

题文

若非零函数对任意实数均有,且当时(1)求证:;(2)求证:为R上的减函数;(3)当时, 对恒有,求实数的取值范围. 题型:未知 难度:其他题型

答案

(1)证法一:即又当时,  则故对于恒有证法二: 为非零函数   (2)证明:令且有, 又 即故 又 故为R上的减函数(3)实数的取值范围为

解析

(1)由题意可取代入等式,得出关于的方程,因为为非零函数,故,再令代入等式,可证,从而证明当时,有;(2)着眼于减函数的定义,利用条件当时,有,根据等式,令,,可得,从而可证该函数为减函数.(3)根据,由条件可求得,将替换不等式中的,再根据函数的单调性可得,结合的范围,从而得解.试题解析:(1)证法一:即又当时,  则故对于恒有                             4分证法二: 为非零函数   (2)令且有, 又 即故 又 故为R上的减函数                                 8分(3)故,        10分则原不等式可变形为依题意有 对恒成立或或故实数的取值范围为       14分

考点

据考高分专家说,试题“若非零函数对任意实数均有,且当时(1)求.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-05 03:40:02,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/490177.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:实数   函数   均有
相关文章
留言与评论(共有 0 条评论)
昵称:
匿名发表 登录账号
         
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图