已知二次函数的最小值为,且关于的一元二次不等式的解集为。求函数的解析式;设其中,求函数在时的最大值;若,对任意,总存在使得成立,求实

更新时间:2023-02-05 03:40:00 阅读: 评论:0

题文

已知二次函数的最小值为,且关于的一元二次不等式的解集为。(Ⅰ)求函数的解析式;(Ⅱ)设其中,求函数在时的最大值;(Ⅲ)若(为实数),对任意,总存在使得成立,求实数的取值范围. 题型:未知 难度:其他题型

答案

(Ⅰ),(Ⅱ)(Ⅲ)

解析

(Ⅰ)属于三个二次之间的关系,由一元二次不等式的解集为 可知二次函数有两个零点分别为-2,0.求得a与b的关系,再根据的最小值为-1,得的值求出解析式,( Ⅱ)由(Ⅰ)得出解析式再利用二次函数动轴定区间思想求解, (Ⅲ)利用( Ⅱ)得出的解析式,再利用单调性求得k的取值范围.试题解析:(Ⅰ)0,2是方程的两根,,又的最小值即 所以                                  .(4分)(Ⅱ)分以下情况讨论的最大值 (1).当时,在上是减函数,                         .(6分)(2).当时,的图像关于直线对称,,故只需比较与的大小.当时,即时,. (8分)当时,即时,;         .(9分)综上所得.                    .(10分)(Ⅲ),函数的值域为在区间上单调递增,故值域为,对任意,总存在使得成立,则                             .(14分)

考点

据考高分专家说,试题“已知二次函数的最小值为,且关于的一元二次.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-05 03:40:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/490160.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   不等式   最大值   求实   值为
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图