已知函数f(x)=log4(2x+3-x2).(1)求f(x)的定义域;(2) 求f(x)的单调区间.

更新时间:2023-02-05 03:28:39 阅读: 评论:0

题文

已知函数f(x)=log4(2x+3-x2).(1)求f(x)的定义域;(2) 求f(x)的单调区间. 题型:未知 难度:其他题型

答案

(1) {x|-1<x<3} (2) 该函数的单调递增区间为(-1,1],单调递减区间为[1,3)

解析

本题主要考查了对数函数与二次函数复合而成的复合函数的定义域、单调性及函数的值域的求解,求解单调区间时不要漏掉对函数定义域的考虑.(1)由题意可得2x+3-x2>0,解不等式可求函数f(x)的定义域(2)要求函数的单调性及单调区间,根据复合函数单调性,只要求解t=2x+3-x2在定义域内的单调区间即可解 (1)令u=2x+3-x2,则u>0,可得函数定义域是:{x|-1<x<3}.…5分(2) y=log4u.由于u=2x+3-x2=-(x-1)2+4.再考虑定义域可知,其增区间是(-1,1],减区间是[1,3). ……7分又y=log4u为(0,+∞)上的增函数,                      ……8分故该函数的单调递增区间为(-1,1],单调递减区间为[1,3).    ……10分

考点

据考高分专家说,试题“已知函数f(x)=log4(2x+3-x.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-05 03:28:39,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/487557.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:定义域   区间   单调   函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图