题文
已知函数是定义在R上的奇函数,,在上是增函数,则下列结论:①若<4且,则;②若,则;③若方程内恰有四个不同的解,则。其中正确的有A.0个B.1个C.2个D.3个 题型:未知 难度:其他题型答案
D解析
解:由f(x+4)=-f(x)可得f(x+8)=f(x),此函数是以8为周期的周期函数,又f(x)是奇函数,且在[0,2]上为增函数∴f(x)在[-2,0]上也是增函数当x∈[2,4]时,x-4∈[-2,0],且由已知可得f(x-4)=-f(x),则可得函数f(x)在[2,4]上单调递减,根据奇函数的对称性可知,f(x)在[-4,-2]上也是单调递减①若0<x1<x2<4,且x1+x2=4,则0<x1<4-x1<4,即0<x1<2,-2<x1-4<0由f(x)在[0,2]上是增函数可得f(x)在[-2,0]上也是增函数,则f(x1)>f(x1-4)=f(-x2)=-f(x2),则f(x1)+f(x2)>0;故①正确②若0<x1<x2<4,且x1+x2=5,则0<x1<5-x1<4,即1<x1<,f(x)在[0,2]上是增函数,由图可知:f(x1)>f(x2);故②正确;③四个交点中两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,此时x1+x2+x3+x4=-12+4=-8,故③正确;故答案为①②③考点
据考高分专家说,试题“已知函数是定义在R上的奇函数,,在上是增.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-05 03:28:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/487250.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |