设,用表示不超过的最大整数,例如.则下列对函数所具有的性质说法正确的有;①定义域是,值域是;②若,则;③,其中;④;⑤

更新时间:2023-02-05 03:27:48 阅读: 评论:0

题文

设,用表示不超过的最大整数,例如.则下列对函数所具有的性质说法正确的有        ;(填上正确的编号)①定义域是,值域是;②若,则;③,其中;④;⑤ 题型:未知 难度:其他题型

答案

①②③④⑤

解析

考点:分析:根据[x]表示不超过x的最大整数可知[x]的结果为整数则值域为Z,所以①正确;因为[x]表示不超过x的最大整数,当x1≤x2,则[x1]≤[x2],②正确;如果n为Z则[n+x]=n+[x],故③正确;根据定义知:[x]≤x<[x]+1;当x是整数时[-x]=-[x],当x不是整数时,[-x]=-[x]-1解答:因为[x]表示不超过x的最大整数,可知[x]的结果为整数,所以值域为Z,①正确;因为[x]表示不超过x的最大整数,当x1≤x2,则[x1]≤[x2],②正确;如果n为Z则[n+x]=n+[x],故③正确;根据定义知:[x]≤x<[x]+1,故④正确;x属于整数时,[-x]=-[x],当x不是整数时,[-x]=-[x]-1.是一个分段函数,故⑤正确.故答案为①②③④⑤老师点评:考查学生理解函数定义域及求法的能力,求函数值域的能力,及理解掌握分段函数的能力

考点

据考高分专家说,试题“设,用表示不超过的最大整数,例如.则下列.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-05 03:27:48,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/487221.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:定义域   值域   不超过   整数   所具
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图