已知复数z1=log2+ki,z2=1

更新时间:2023-02-04 23:40:06 阅读: 评论:0

题文

已知复数z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数,(1)求k的值;(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值;(3)求证:对任意实数m,函数y=f(x)图象与直线y=12x+m的图象最多只有一个交点. 题型:未知 难度:其他题型

答案

(1)z1z2=(log2(2x+1)+ki)(1-xi);所以f(x)=log2(2x+1)+kx,因为函数f(x)是关于x的偶函数所以f(-x)=log2(2-x+1)-kx=log2(2x+1)+kx=f(x),所以2kx=-x,所以k=-12(2)由(1)可知f(x)=log2(2x+1)-12x,所以y=f(log2x)=log2(x+1)-12log2x=log2x+1x=log(x+1x)2,所以x∈(0,a],a>0,a∈R,ymin=log2(a+1a)(0<a≤1)1(a>1)(3)函数y=f(x)图象与直线y=12x+m的图象最多只有一个交点,就是log2(2x+1)-12x=12x+m最多只有一个解,就是log2(2x+1)=x+m最多只有一个解,因为函数log2(2x+1)是单调增函数,x+m也是单调增函数,所以对任意实数m,函数y=f(x)图象与直线y=12x+m的图象最多只有一个交点.

解析

12

考点

据考高分专家说,试题“已知复数z1=log2(2x+1)+ki.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 23:40:06,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/430348.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:复数   ki
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图