题文
某品牌专卖店准备在国庆期间举行促销活动,根据市场调查,该店决定从2种不同型号的洗衣机,2种不同型号的电视机和种不同型号的空调中(不同种商品的型号不同),选出4种不同型号的商品进行促销,该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m元奖金.假设顾客每次抽奖时获奖与否的概率都是12,设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X.(Ⅰ)求选出的4种不同型号商品中,洗衣机、电视机、空调都至少有一种型号的概率;(Ⅱ)请写出X的分布列,并求X的数学期望;(Ⅲ)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元? 题型:未知 难度:其他题型答案
(Ⅰ)设选出的4种不同型号商品中,洗衣机、电视机、空调都至少有一种型号为事件A;则 P(A)=2C12C13+C12C12C23C47=2435(4分)(Ⅱ)X的所有可能的取值为0,m,2m,3m.则P(X=0)=C03×(12)0×(12)3=18,P(X=m)=C13×(12)1×(12)2=38,P(X=2m)=C23×(12)2×(12)1=38,P(X=3m)=C33×(12)3×(12)0=18 (8分)所以,顾客在三次抽奖中所获得的奖金总额K的分布列为:X0m2m3mP18383818(9分)于是顾客在三次抽奖中所获得的奖金总额的数学期望是EX=0×18+m×38+2m×38+3m×18=1.5m. (10分)(Ⅲ)要使促销方案对商场有利,应使顾客获奖奖金总额的数学期望低于商场的提价数额,因此应有1.5m<150,所以m<100.故每次中奖奖金要低于100元,才能使促销方案对商场有利.(12分)解析
2C12C13+C12C12C23C47考点
据考高分专家说,试题“某品牌专卖店准备在国庆期间举行促销活动,.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-04 23:04:35,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/421765.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |