已知下列四个命题:定义在R上的函数g,若满足g=g且g=g,则g为偶函数;定义在R上的函数g满足g(2

更新时间:2023-02-04 23:04:14 阅读: 评论:0

题文

已知下列四个命题:(1)定义在R上的函数g(x),若满足g(2)=g(-2)且 g(-5)=g(5),则g(x)为偶函数;(2)定义在R上的函数g(x)满足g(2)>g(1),则函数g(x)在R上不是减函数;(3)y=2x+1的图象可由y=2x的图象向上平移一个单位得到,也可由y=2x的图象向左平移一个单位得到;(4)f(1-x)的图象可由f(x)的图象先向右平移一个单位,再将图象关于y轴对称得到.其中,正确的命题序号为______. 题型:未知 难度:其他题型

答案

对于(1)定义在R上的函数g(x),若满足g(2)=g(-2)且 g(-5)=g(5),由偶函数的定义知,不满足x的任意性,故不对对于(2)若函数g(x)在R上是减函数,则g(2)<g(1),从而得出定义在R上的函数g(x)满足g(2)>g(1),则函数g(x)在R上不是减函数,是正确的;对于(3)y=2x+1的图象可由y=2x的图象向上平移一个单位得到,也可由y=2x的图象向左平移12个单位得到;故(3)错;对于(4)f(1-x)的图象可由f(x)的图象先将图象关于y轴对称,再向右平移一个单位得到,而(4)的顺序不对,故错;其中,正确的命题序号为 (2).故答案为:(2).

解析

12

考点

据考高分专家说,试题“已知下列四个命题:(1)定义在R上的函数.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 23:04:14,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/421668.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:偶函数   函数   定义   命题
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图