函数f满足下列条件:①f=1②f=mf.求证:f=f+f;证明:f在(0,

更新时间:2023-02-04 23:04:12 阅读: 评论:0

题文

函数f(x)(x∈R+)满足下列条件:①f(a)=1(a>1)②f(xm)=mf(x).(1)求证:f(xy)=f(x)+f(y);(2)证明:f(x)在(0,+∞)上单调递增;(3)若不等式f(x)+f(3-x)≤2恒成立,求实数a的取值范围. 题型:未知 难度:其他题型

答案

(1)证明:令x=am,y=an,则f(xy)=f(aman)=f(am+n)=(m+n)f(a)=m+n,同理,f(x)+f(y)=m+n,∴得证(2)证明:任设x1,x2∈R+,x1>x2,可令,x1=x2t(t>1),t=aα(α>0)则f(x1)-f(x2)=f(x2t)-f(x2)=f(x2)+f(t)-f(x2)=f(t)=f(aα)=αf(a)=α>0即f(x1)>f(x2)∴f(x)在正实数集上单调递增(3)f(x)+f(3-x)≤2可化成,f(x)+f(3-x)≤2f(a)即f(x)+f(3-x)≤f(a2),即f[(x)(3-x)]≤f(a2)0<x<3,即x(3-x)≤a20<x<3,而当0<x<3时,[x(3-x)]max=94依题意,有a2≥94,又a>1∴a≥32.

解析

f[(x)(3-x)]≤f(a2)0<x<3

考点

据考高分专家说,试题“函数f(x)(x∈R+)满足下列条件:①.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 23:04:12,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/421655.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   条件   mf
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图