知函数f的图象与函数h(x)=x+1x+2的图象关于点A对称.求函数f的解析式,并写出定义域、值域.若g=f+ax

更新时间:2023-02-04 23:04:01 阅读: 评论:0

题文

知函数f(x)的图象与函数h(x)=x+1x+2的图象关于点A(0,1)对称.(1)求函数f(x)的解析式,并写出定义域、值域.(2)若g(x)=f(x)+ax,且g(x)在区间(0,2]上的值不小于6,求实数a的取值范围. 题型:未知 难度:其他题型

答案

(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上(3分)∴2-y=-x+1-x+2,∴y=x+1x,即f(x)=x+1x(6分)f(x)的定义域为:{x|x≠0),值域为:{x|x≤0或x≥4}(2)由题意  g(x)=x+a+1x,且g(x)=x+a+1x≥6∵x∈(0,2]∴a+1≥x(6-x),即a≥-x2+6x-1,(9分)令q(x)=-x2+6x-1,x∈(0,2],q(x)=-x2+6x-1=-(x-3)2+8,∴x∈(0,2]时,q(x)max=7(11分)∴a≥7(13分)方法二:q′(x)=-2x+6,x∈(0,2]时,q′(x)>0即q(x)在(0,2]上递增,∴x∈(0,2]时,q(x)max=7即  a≥x2-1在x∈(0,2]时恒成立.∵x∈(0,2]时,(x2-1)max=3∴a≥3∴a≥7

解析

1-x

考点

据考高分专家说,试题“知函数f(x)的图象与函数h(x)=x+.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 23:04:01,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/421576.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   图象   定义域   值域   对称
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图