题文
对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.(1)写出f(5.2)的值及g(x)的值域;(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;(3)求F(1)+F(2)+F(3)+…+F(16)的值. 题型:未知 难度:其他题型答案
(1)∵f(x)=[x]∴f(5.2)=[5.2]=5由“取整函数”的定义及g(x)={x}=x-[x],当x为非负数或负整数时,g(x)值即为x的小数部分当x为负非整数时,g(x)值即为x的小数部分与1的和故g(x)的值域为[0,1)(2)∵F(n)=f(log2n)(1≤n≤210,n∈N)∴F(n)=0,n=11,2≤n<42,4≤n<83,8≤n<164,16≤n<325,32≤n<646,64≤n<1287,128≤n<2568,256≤n<5129,512≤n<102410,n=1024(3)由(2)得F(1)+F(2)+F(3)+…+F(16)=0+1+1+2+2+2+2+3+3+3+3+3+3+3+3+4=38解析
0,n=11,2≤n<42,4≤n<83,8≤n<164,16≤n<325,32≤n<646,64≤n<1287,128≤n<2568,256≤n<5129,512≤n<102410,n=1024考点
据考高分专家说,试题“对于任意实数x,符号[x]表示不超过x的.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-04 22:59:25,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/420569.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |