题文
已知直线l:mx-2y+2m=0(m∈R)和椭圆C:x2a2+y2b2=1(a>b>0),椭圆C的离心率为22,连接椭圆的四个顶点形成四边形的面积为22.(I)求椭圆C的方程;(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式. 题型:未知 难度:其他题型答案
(I)由离心率e=22,得b=c=22a又因为2ab=22,所以a=2,b=1,即椭圆标准方程为x22+y2=1.(4分)(II)由l:mx-2y+2m=0经过定点Q(-2,0),则直线l′:y=k(x+2),由 y=k(x+2)x22+y2=1有(2k2+1)x2+8k2x+8k2-2=0.所以△=64k4-8(2k2+1)(4k2-1)>0,可化为 2k2-1<0解得-22<k<22. (8分)(Ⅲ) 由l:mx-2y+2m=0,设x=0,则y=m,所以P(0,m).设M(x,y)满足x22+y2=1,则|PM|2=x2+(y-m)2=2-2y2+(y-m )2=-y2-2my+m2+2=-(y+m)2+2m2+2,因为-1≤y≤1,所以当|m|>1时,|MP|的最大值f(m)=1+|m|;当|m|≤1时,|MP|的最大值f(m)=2m2+2;所以f(m)=1+|m|m>12m2+2|m|≤1.(12分)解析
22考点
据考高分专家说,试题“已知直线l:mx-2y+2m=0(m∈R.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-04 22:58:16,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/420208.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |