题文
已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有f(x1)-f(x2)x1-x2>0.给出下列命题:①f(3)=0;②直线x=-6是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[-9,-6]上为增函数;④函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为______(把所有正确命题的序号都填上) 题型:未知 难度:其他题型答案
①:对于任意x∈R,都有f (x+6)=f (x)+f (3)成立,令x=-3,则f(-3+6)=f(-3)+f (3),又因为f(x)是R上的偶函数,所以f(3)=0.②:由(1)知f (x+6)=f (x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(-x),而f(x)的周期为6,所以f(x+6)=f(-6+x),f(-x)=f(-x-6),所以:f(-6-x)=f(-6+x),所以直线x=-6是函数y=f(x)的图象的一条对称轴.③:当x1,x2∈[0,3],且x1≠x2时,都有f(x1)-f(x2)x1-x2>0所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[-3,0]上为减函数而f(x)的周期为6,所以函数y=f(x)在[-9,-6]上为减函数.④:f(3)=0,f(x)的周期为6,所以:f(-9)=f(-3)=f(3)=f(9)=0函数y=f(x)在[-9,9]上有四个零点.故答案为:①②④.解析
f(x1)-f(x2)x1-x2考点
据考高分专家说,试题“已知函数y=f(x)是R上的偶函数,对于.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-04 22:58:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/420074.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |