如图1,在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各连接一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度u0,求弹簧第一次

更新时间:2023-02-04 22:56:58 阅读: 评论:0

题文

(1)如图1,在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各连接一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度u0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图2,将N个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.

题型:未知 难度:其他题型

答案

(1)设每个小球质量为m,以u1、u2分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有mu1+mu2=mu0(以向右为速度正方向)12mu21+12mu22=12mu20解得u1=u0,u2=0或u1=0,u2=u0由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取u1=0,u2=u0即弹簧第一次恢复到自然长度时,左侧小球速度为0,右侧小球速度为u0.(2)以v1、v1′分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度,规定向右为速度的正方向,由动量守恒和能量守恒定律,mv1+mv1′=012mv21+12mv′21=E0解得v1=E0m,v1′=-E0m或v1=-E0m,v1′=E0m在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取v1=-E0m,v1′=E0m振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为v1,此后两小球都向左运动,当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大,设此速度为v10,根据动量守恒定律:2mv10=mv1用E1表示最大弹性势能,由能量守恒有12mv210+12mv210+E1=12mv21解得        E1=14E0振子2 被碰撞后瞬间,左端小球速度为E0m,右端小球速度为0.以后弹簧被压缩,当弹簧再恢复到自然长度时,根据(1)题结果,左端小球速度v2=0,右端小球速度v2′=E0m,与振子3碰撞,由于交换速度,振子2右端小球速度变为0,振子2静止,弹簧为自然长度,弹性势能为E2=0.同样分析可得E2=E3=…EN-1=0振子N被碰撞后瞬间,左端小球速度 v′N-1=E0m,右端小球速度为0,弹簧处于自然长度.此后两小球都向右运动,弹簧被压缩,当它们向右的速度相同时,弹簧被压缩至最短,弹性势能最大.此速度为vN0,根据动量守恒定律,2mvN0=mv´N-1用EN表示最大弹性势能,根据能量守恒,有12mv2N0+12mv2N0+EN=12mv2N-1解得        EN=14E0故所有可能的碰撞都发生后第一个弹簧振子的最大弹性势能为14E0,第二个到第N-1个弹簧振子的最大弹性势能为0,第N个弹簧振子的最大弹性势能为14E0.

解析

12

考点

据考高分专家说,试题“(1)如图1,在光滑水平长直轨道上,放着.....”主要考查你对 [动量守恒定律 ]考点的理解。

动量守恒定律

动量守恒定律: 1、内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。 2、表达式:m1v1+m2v2=m1v1'+m2v2'。 3、动量守恒定律成立的条件: ①系统不受外力或系统所受外力的合力为零; ②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计; ③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。 4、动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。

动量守恒定律与机械能守恒定律的比较:

系统动量守恒的判断方法:

方法一:南动量守恒的条件判断动量守恒的步骤如下: (1)明确系统由哪几部分组成。 (2)对系统中各物体进行受力分析,分清哪些是内力,哪些是外力。 (3)看所有外力的合力是否为零,或内力是否远大于外力,从而判断系统的动量是否守恒。方法二:南系统动量变化情况判断动量守恒方法如下: (1)明确初始状态系统的总动量是多少。 (2)对系统内的物体进行受力分析、运动分析,确定每一个物体的动量变化情况。 (3)确定系统动量变化情况,进而判定系统的动量是否守恒。

本文发布于:2023-02-04 22:56:58,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/419685.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:小球   弹簧   左端   如图   两端
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图