题文
定义在R上的函数f(x)满足条件:f(x+4)=f(x),当x∈[2,6]时,f(x)=(12)|x-m|+n,且f(4)=31.(1)求证:f(2)=f(6);(2)求m,n的值;(3)比较f(log3m)与f(log3n)的大小. 题型:未知 难度:其他题型答案
(1)证明:∵f(x+4)=f(x)∴f(2)=f(6)…(4分)(2)由f(4)=31f(2)=f(6)得(12)|4-m+n=31(12)|2-m+n=(12)|6-m+n,解得m=4n=30…(10分)(3)∵log34∈(1,2)∴log34+4∈(5,6)∴f(log34)=f(log34+4)=(12)|log34+4-4|+30=(12)log34+30∵log330∈(3,4)∴f(log330)=(12)|log330-4|+30=(12)4-log330+30=(12)log32710+30∵log32710<log34∴(12)log32710>(12)log34∴(12)log32710+30>(12)log34+30∴f(log34)<f(log330)即f(log3m)<f(log3n)…(16分)解析
f(4)=31f(2)=f(6)考点
据考高分专家说,试题“定义在R上的函数f(x)满足条件:f(x.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-04 22:47:40,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/417593.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |