题文
已知函数f(x)对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0≤x<1时,0≤f(x)<1.(1)判断f(x)的奇偶性;(2)判断f(x)在[0,+∞)上的单调性,并给出证明;(3)若a≥0且f(a+1)≤39,求a的取值范围. 题型:未知 难度:其他题型答案
(1)令y=-1,则f(-x)=f(x)•f(-1),∵f(-1)=1,∴f(-x)=f(x),且x∈R∴f(x)为偶函数.(2)若x≥0,则f(x)=f(x•x)=f(x)•f(x)=[f(x)]2≥0.若存在x0>0,使得f(x0)=0,则f(27)=f(x0•27x0)=f(x0)f(27x0)=0,与已知矛盾,∴当x>0时,f(x)>0设0≤x1<x2,则0≤x1x2<1,∴f(x1)=f(x1x2•x2)=f(x1x2)•f(x2),∵当x≥0时f(x)≥0,且当0≤x<1时,0≤f(x)<1.∴0≤f(x1x2)<1,∴f(x1)<f(x2),故函数f(x)在[0,+∞)上是增函数.(3)∵f(27)=9,又f(3×9)=f(3)•f(9)=f(3)•f(3)•f(3)=[f(3)]3,∴9=[f(3)]3,∴f(3)=39,∵f(a+1)≤39,∴f(a+1)≤f(3),∵a≥0,∴(a+1)∈[0,+∞),3∈[0,+∞),∵函数在[0,+∞)上是增函数.∴a+1≤3,即a≤2,又a≥0,故0≤a≤2.解析
x考点
据考高分专家说,试题“已知函数f(x)对任意实数x、y都有f(.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值单调性的定义:
1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。
2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}
判断函数f(x)在区间D上的单调性的方法:
(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。
本文发布于:2023-02-04 22:47:11,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/417444.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |