如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面 上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、

更新时间:2023-02-04 22:46:34 阅读: 评论:0

题文

如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面 上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板,滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长l=6.5R,板右端到C的距离L在R<L<5R范围内取值,E距A为s=5R,物块与传送带、物块与滑板间的动摩擦因数均为μ=0.5,重力加速度取g。(1)求物块滑到B点的速度大小。(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功Wf与L的关系,并判断物块能否滑到CD轨道的中点。

题型:未知 难度:其他题型

答案

解:(1)物块先做匀加速直线运动,滑动摩擦力做正功,到A点时恰好与传送带的速度相等,然后沿光滑的半圆滑下来。设物块滑到B点时的速度为vB,对物块运动的整个过程由能量关系有: 解得: (2)假设物块和滑板能够达到共同的速度,设为v共,以物块和滑板组成的系统为研究对象,由动量守恒定律:mvB=(M+m)v共设物块在滑板上的相对位移为△s,由能量守恒定律有:μmg△s=v共2 由以上两式得:△s=6R<6.5R,所以滑块没有掉下来设这个过程中滑板前进的位移为s,以滑板为研究对象,由动能定理得:v共2 解得:s=2R 物块的对地位移:s1=2R+△s=8R 当2R≤L<5R时,滑块先做匀减速运动,再做匀速运动,滑板碰撞静止后,物块再做匀减速运动,滑上C点,再沿圆周运动由动能定理:解得:,所以滑块不能滑到CD轨道的中点当R<L<2R时,滑块先做匀减速运动,在没有和滑板达到共同速度之前,滑板碰撞静止,滑块仍然向前滑动,到C点,然后滑上轨道。若恰好能上升到中点,则应满足-μmg(L+6.5R)-mgh= 解得:L=0.5R L越小越容易上到中点,但R<2L<2R,故物块不能上升到CD轨道的中点Wf=μng(L+6.5R)

解析

该题暂无解析

考点

据考高分专家说,试题“如图所示,以A、B和C、D为.....”主要考查你对 [动量守恒定律的应用 ]考点的理解。

动量守恒定律的应用

动量守恒定律的应用:1、动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。即m1v1+m2v2=m1v1'+m2v2'。 2、动量守恒定律的常见问题: ①碰撞问题; ②爆炸问题; ③反冲现象; ④人船模型; “人船模型”是动量守恒定律的应用的一个经典模型,该模型应用的条件:一个原来处于静止状态的系统,当系统中的物体间发生相对运动的过程中,有一个方向上动量守恒。 ⑤子弹打木块模型。子弹打木块模型及推广: Ⅰ、一物块在木板上滑动,μNS相对=ΔEk系统=Q,Q为摩擦在系统中产生的热量; Ⅱ、小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动,包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 Ⅲ、一静一动的同种电荷追碰运动等。

从“六性”把握动量守恒定律的应用方法:

1.条件性动量守恒定律的成立是有条件的,只有当系统满足动量守恒的条件时才能利用方程式进行计算。 2.矢量性动量守恒方程是一个矢量方程。对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负。若方向未知,可设为与正方向相同列动量守恒方程,通过解得结果的正负,判定未知量的方向。 3.参考系的同一性速度具有相对性,公式中的均应对同一参考系而言,一般均取对地的速度。4.状态的同一性相互作用前的总动量,这个“前”是指相互作用前的某一时刻,所以均是此时刻的瞬时速度,同理 应是相互作用后的某一时刻的瞬时速度。 5.整体性动量守恒定律是针对一个物体系统而言的,具有系统的整体性。 6.普适性它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。

临界与极值问题的解法:

在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题。分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这种条件就是临界条件。临界条件往往表现为某个(或某些)物理量的特定取值。在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键。

“人船模型”的解题规律:

 “人船模型”是动量守恒定律的拓展应用,它把速度和质量的关系推广到质量和位移的关系,这样给我们提供了一种解题思路和解决问题的方法。人船问题的适用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零。这种模型中涉及两种题型,一种题型是求解某物体在相互作用过程中通过的位移,此题型中需根据动量守恒、位移关系得到两个关系求解,如在图中,人从船头走到船尾时由动量守恒可得:再由图中几何关系有可得人船的位移分别为另一种题型是求某一时刻物体的速度,这种题型是先要由动量守恒求得两物体的一个速度关系,再由能量守恒得到两物体的另一个速度关系,从而求得物体的瞬时速度(或与瞬时速度相关的物理量)。

本文发布于:2023-02-04 22:46:34,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/417240.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:光滑   平面   左端   半圆   滑板
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图