一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的,则单摆的A.频率不变,振幅不变B.频率不变,振幅改变C.频率改变,振幅不变D.频率

更新时间:2023-02-04 22:32:50 阅读: 评论:0

题文

一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的,则单摆的A.频率不变,振幅不变B.频率不变,振幅改变C.频率改变,振幅不变D.频率改变,振幅改变

题型:未知 难度:其他题型

答案

B

解析

【错解分析】错解:错解一:因为单摆的周期(频率)是由摆长l和当地重力加速度g决定的,所以频率是不变的,而从动能公式上看:,质量变为原来的4倍,速度变为原来的,结果动能不变,既然动能不变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。所以振幅也不变,应选A。错解二:认为速度减为原来的,即运动得慢了,所以频率要变,而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C。错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能EP=mgh,EP不变,m变为原来的4倍,h一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D。此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E总不变时,EP=mgh,m变大了,h一定变小。说明有些同学考虑问题还是不够全面。【正解】(1)实际上,通过实验我们已经了解到,决定单摆周期的是摆长及当地重力加速度,并进一步找到周期公式:,单摆的周期与质量无关,与单摆的运动速度也无关。当然,频率也与质量和速度无关,所以不能选C,D。(2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能。当m增为原来的4倍,速度减为原来的时,动能不变,最高点的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能EP=mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。因此正确答案应选B。【点评】本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率的印度应由周期公式为依据,而不能以速度判断振动的快慢。振幅应从为依据。

考点

据考高分专家说,试题“一个单摆,如果摆球的质量增加为原来的4倍.....”主要考查你对 [单摆的周期 ]考点的理解。

单摆的周期

单摆:1.定义:用一根不可伸长且没有质量的细线悬挂一质点所组成的装置,叫做单摆,它是实际摆的理想化模型2.模型条件:(1)摆线的形变量与摆线长度相比小得多,摆线的质量与摆球质量相比小得多,这时可把摆线看成是不可伸长,且没有质量的细线。 (2)摆球的大小与摆线长度相比小得多,这时可把摆球看成是没有大小只有质量的质点。 (3)忽略空气对它的阻力。某一物理量是否可以略去不计,是相对而言的。为了满足上述条件及尽量减小空气阻力对它的影响,我们组成单摆的摆球应选择质量大而体积小的球,摆线应尽量选择细而轻目弹性小的线3.平衡位置:摆球静止时所处的位置即最低点4.简谐运动条件:5.单摆的周期公式:(可由,推导)。 ①在振幅很小的条件下,单摆的振动周期跟振幅无关; ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关; ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

单摆问题中的等效处理方法:

单摆的周期公式5.单摆的周期公式:(可由,推导)。 ①在振幅很小的条件下,单摆的振动周期跟振幅无关; ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关; ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

单摆问题中的等效处理方法:

单摆的周期公式是惠更斯从实验中总结出来的。单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大回复力越大,加速度 ()越大。由于摆球的轨迹是圆弧,所以除最高点外,摆球的回复力并不等于合外力。在有些振动系统中l不一定是绳长,g也不一定为9.8m/s2,因此出现了等效摆长和等效重力加速度的问题。 1.等效摆长摆长是指摆动圆弧的圆心到撰球重心的距离,而不一定为摆绳的长。如图中,摆球可视为质点,各段绳长均为Z,甲、乙摆球做垂直纸面的小角度摆动,丙摆球在纸面内做小角度摆动,O'为垂直纸面的钉子,而且)越大。由于摆球的轨迹是圆弧,所以除最高点外,摆球的回复力并不等于合外力。在有些振动系统中l不一定是绳长,g也不一定为9.8m/s2,因此出现了等效摆长和等效重力加速度的问题。 1.等效摆长摆长是指摆动圆弧的圆心到撰球重心的距离,而不一定为摆绳的长。如图中,摆球可视为质点,各段绳长均为Z,甲、乙摆球做垂直纸面的小角度摆动,丙摆球在纸面内做小角度摆动,O'为垂直纸面的钉子,而且甲:等效摆长乙:等效摆长乙:等效摆长丙:摆绳摆到竖直位置时,圆弧圆心就由O变为O',摆球振动时,半个周期摆长为l,另半个周期摆长为,则单摆丙的周期为 2.等效重力加速度不一定等于9.8,则单摆丙的周期为 2.等效重力加速度不一定等于9.8(1)g由单摆所在的空间位置决定。g随所在地球表面的位置和高度的变化而变化,纬度越低,高度越高,g的值就越小,另外,在不同星球上管也不同。 (2)g还由单摆系统的运动状态决定,如单摆处在向上加速的升降机中,设加速度为a,则摆球处于超重状态,沿圆弧的切向分力变大,则重力加速度的等效值若升降机加速下降,则单摆若在沿轨道运行的卫星内,摆球完全失重,回复力为零,等效值,摆球不摆动,周期无穷大。 (3)一般情况下,若升降机加速下降,则单摆若在沿轨道运行的卫星内,摆球完全失重,回复力为零,等效值,摆球不摆动,周期无穷大。 (3)一般情况下,值等于摆球相对于加速系统静止在平衡位置时(平衡位置是指回复力为零的位置,而不是合力为零的位置,也可以说成是让摆球不摆时的位置)重力加速度的等效值,等于摆绳所受的张力与摆球质量的比值即但需注意如果在不引起回复力变化的情况,上述方法并不适用,如摆球带电,再在悬点处固定一带电小球,两球之间的静电力不引起回复力的变化,单摆振动周期并不变。

本文发布于:2023-02-04 22:32:50,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/415171.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:振幅   频率   单摆   速度   位置
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图