定义在R上的函数f满足f+1=f+f,f=0,且当x>1时f<0.证明:f在R上是减函数;(2

更新时间:2023-02-04 21:59:45 阅读: 评论:0

题文

定义在R上的函数f(x)满足f(x+y)+1=f(x)+f(y)(x,y∈R),f(1)=0,且当x>1时f(x)<0.(1)证明:f(x)在R上是减函数;(2)若4f(m+14)≥3,求实数m的范围. 题型:未知 难度:其他题型

答案

(1)证明:取y=1,则f(x+1)+1=f(x)+f(1)=f(x).设x1,x2∈R,且x1>x2,则x1-x2>0,x1-x2+1>1,因为当x>1时f(x)<0,所以f(x1-x2+1)<0.f(x1)=f(x1+1)+1=f[x2+(x1-x2+1)]+1=f(x2)+f(x1-x2+1)-1+1=f(x2)+f(x1-x2+1).因为f(x1-x2+1)<0,所以f(x2)<f(x1).所以函数f(x)在R上是减函数;(2)取x=y=0,得f(0)+1=f(0)+f(0),所以f(0)=1,由4f(m+14)≥3,得4f(m+14)=4f(m4)-1≥3.所以4f(m4)≥4,f(m4)≥1.因为f(x)为实数集上的减函数,且f(0)=1所以m4≤0.则m≤0.所以实数m的范围是(-∞,0].

解析

m+14

考点

据考高分专家说,试题“定义在R上的函数f(x)满足f(x+y).....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 21:59:45,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/409429.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   定义   上是减
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图