已知函数f满足定义域在上的函数,对于任意的x,y∈,都有f=f+f,当且仅当x>1时,f<0成立,

更新时间:2023-02-04 21:54:13 阅读: 评论:0

题文

已知函数f(x)满足定义域在(0,+∞)上的函数,对于任意的x,y∈(0,+∞),都有f(xy)=f(x)+f(y),当且仅当x>1时,f(x)<0成立,(1)设x,y∈(0,+∞),求证f(yx)=f(y)-f(x);(2)设x1,x2∈(0,+∞),若f(x1)<f(x2),试比较x1与x2的大小;(3)解关于x的不等式f(x2-2x+1)>0. 题型:未知 难度:其他题型

答案

(1)证明:∵f(xy)=f(x)+f(y),∴f(yx)+f(x)=f(y),∴f(yx)=f(y)-f(x);(2)∵f(x1)<f(x2),∴f(x1)-f(x2)<0,又f(x1x2)=f(x1)-f(x2),所以f(x1x2)<0∵当且仅当x>1时,f(x)<0成立,∴当f(x)<0时,x>1,∴x1x2>1,x1>x2(3)令x=y=1代入f(xy)=f(x)+f(y)得f(1)=f(1)+f(1),f(1)=0,∴f(x2-2x+1)>0⇔f(x2-2x+1)>f(1),由(2)可知函数f(x)在定义域(0,+∞)上是减函数,∴0<x2-2x+1<1,解得0<x<2且x≠1,∴不等式解集为(0,1)∪(1,2)

解析

yx

考点

据考高分专家说,试题“已知函数f(x)满足定义域在(0,+∞).....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 21:54:13,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/407856.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   定义域   都有   在上
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图