已知f、g都是定义在R上的函数,如果存在实数m、n使得h=mf+ng,那么称h为f、g在R上生成的一个函数.设f

更新时间:2023-02-04 21:53:09 阅读: 评论:0

题文

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(2);(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论. 题型:未知 难度:其他题型

答案

(Ⅰ)设h(x)=mf(x)+ng(x),则h(x)=m(x2+x)+n(x+2)=mx2+(m+n)x+2n(m≠0),因为h(x)为一个二次函数,且为偶函数,所以二次函数h(x)的对称轴为y轴,即x=-m+n2m=0,所以n=-m,则h(x)=mx2-2m,则h(2)=0;(3分)(Ⅱ)由题意,设h(x)=mf(x)+ng(x)=mx2+(am+n)x+bn(m,n∈R,且m≠0)由h(x)同时也是g(x)、l(x)在R上生成的一个函数,知存在m0,n0使得h(x)=m0g(x)+n0l(x)=2n0x2+(m0+3n0)x+(bm0-n0),所以函数h(x)=mx2+(am+n)x+bn=2n0x2+(m0+3n0)x+(bm0-n0),则m=2n0am+n=m0+3n0bn=bm0-n0,(5分)消去m0,n0,得am=(12b+32)m,因为m≠0,所以a=12b+32,(7分)因为b>0,所以a+b=12b+32+b≥32+2b•12b=32+2(当且仅当b=22时取等号),故a+b的最小值为32+2.(9分)(Ⅲ)结论:函数h(x)不能为任意的一个二次函数.以下给出证明过程.证明:假设函数h(x)能为任意的一个二次函数,那么存在m1,n1使得h(x)为二次函数y=x2,记为h1(x)=x2,即h1(x)=m1f(x)+n1g(x)=x2;①同理,存在m2,n2使得h(x)为二次函数y=x2+1,记为h2(x)=x2+1,即h2(x)=m2f(x)+n2g(x)=x2+1.②由②-①,得函数h2(x)-h1(x)=(m2-m1)f(x)+(n2-n1)g(x)=1,令m3=m2-m1,n3=n2-n1,化简得m3(x2+ax)+n3(x+b)=1对x∈R恒成立,即m3x2+(m3a+n3)x+n3b=1对x∈R恒成立,所以m3=0m3a+n3=0n3b=1,即m3=0n3=0n3b=1,显然,n3b=0×b=0与n3b=1矛盾,所以,假设是错误的,故函数h(x)不能为任意的一个二次函数.(14分)注:第(Ⅲ)问还可以举其他反例.如h1(x)=2x2,h2(x)=2x2+1,

解析

m+n2m

考点

据考高分专家说,试题“已知f(x)、g(x)都是定义在R上的函.....”主要考查你对 [函数的单调性、最值 ]考点的理解。 函数的单调性、最值

单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间  3、最值的定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值 p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}p.MsoNormal, li.MsoNormal, div.Msonormal {margin:0cm;margin-bottom:.0001pt;text-align:justify;text-justify:inter-ideograph;font-size:10.5pt;font-family:"Times New Roman";}div.Section1 {page:Section1;}

判断函数f(x)在区间D上的单调性的方法:

(1)定义法:其步骤是:①任取x1,x2∈D,且x1<x2; ②作差f(x1)-f(x2)或作商 ,并变形;③判定f(x1)-f(x2)的符号,或比较 与1的大小; ④根据定义作出结论。(2)复合法:利用基本函数的单调性的复合。(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。

本文发布于:2023-02-04 21:53:09,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/407476.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:都是   实数   函数   定义   一个函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图