题文
下列命题中:(1)若满足,满足,则;(2)函数且的图象恒过定点A,若A在 上,其中则的最小值是; (3)设是定义在R上,以1为周期的函数,若在上的值域为,则在区间上的值域为; (4)已知曲线与直线仅有2个交点,则; (5)函数图象的对称中心为(2,1)。其中真命题序号为 . 题型:未知 难度:其他题型答案
(2)(3)(5)点击查看函数图象知识点讲解,巩固学习
解析
(1) 若满足,则时,代入左边有,当时,代入左边有,所以此时方程中;满足,则时代入左边有,当时代入左边有,所以此时方程中.所以,错误.(2)函数且的图像恒过定点,因为在直线上,代入有,可得.则,因为所以,根据均值不等式可知,当且仅当,即时取得等号.正确.(3) 因为函数在上的值域为,设,则,所以,因为是定义在R上,以1为周期的函数,所以,则有,所以此时令,则函数的值域是在值域基础上上移2个单位得到的为;同理可设,通过寻找值域关系可得的值域为.综上可知在上的值域为.正确;(4) 根据曲线方程知,可化简为,表示以为圆心,1为半径的圆的轴及其以上部分的曲线.直线表示经过定点有斜率的直线.因为两者有两个交点,所以画图可知,当直线与曲线相切时,,当恰有两个交点时,直线过原点,所以,综上可知,错误.(5) 函数的定义域为.如果函数图象的对称中心为,那么函数上的点关于的对称点也在函数上.所以根据对数的运算法则可得.即;将代入函数式,所以函数过点,显然成立.所以正确.考点
据考高分专家说,试题“下列命题中:(1)若满足,满足,则;(2.....”主要考查你对 [函数图象 ]考点的理解。 函数图象定义:
点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。
函数图像的画法:
(1)描点法: 一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。 (2)用函数的性质画图 一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。 (3)通过图像变换画图 (一)平移变化: Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到. (二)对称变换: Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到; Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到; Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到; Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.
函数图像的判断:
这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。
常用结论: (1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。
本文发布于:2023-02-04 21:38:52,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/405389.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |