将y=lnx的图象绕坐标原点O逆时针旋转角θ后第一次与y轴相切,则角θ满足的条件是A.esinθ=cosθB.sinθ=ecosθC.esinθ=lD.

更新时间:2023-02-04 21:26:09 阅读: 评论:0

题文

将y=lnx的图象绕坐标原点O逆时针旋转角θ后第一次与y轴相切,则角θ满足的条件是( )A.esinθ=cosθB.sinθ=ecosθC.esinθ=lD.ecosθ=1 题型:未知 难度:其他题型

答案

设y=f(x)=lnx的图象的切线的斜率为k,设切点坐标为(x0,y0),则由题意可得,切线的斜率为 k=y0x0=lnx0x0,再由导数的几何意义可得 k=f′(x0)=1x0,∴lnx0x0=1x0,∴x0=e.再由θ的意义可得,tanθ=sinθcosθ=1k=x0=e,∴sinθ=ecosθ,故选B.

点击查看函数图象知识点讲解,巩固学习

解析

y0x0

考点

据考高分专家说,试题“将y=lnx的图象绕坐标原点O逆时针旋转.....”主要考查你对 [函数图象 ]考点的理解。 函数图象

定义:

点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。

函数图像的画法:

(1)描点法: 一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。 (2)用函数的性质画图 一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。 (3)通过图像变换画图 (一)平移变化: Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到. (二)对称变换: Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到; Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到; Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到; Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.

函数图像的判断:

这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。

常用结论: (1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。  

本文发布于:2023-02-04 21:26:09,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/404339.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:逆时针   原点   坐标   图象   条件
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图