设F=f+f,x∈R,[﹣π,﹣]是函数F的单调递增区间,将F的图象按向量=平移得到一个新的函数G的

更新时间:2023-02-04 21:26:03 阅读: 评论:0

题文

设F(x)=f(x)+f(﹣x),x∈R,[﹣π,﹣]是函数F(x)的单调递增区间,将F(x)的图象按向量=(π,0)平移得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是   [     ]A.[,2π]B.[π,]C.[,π]D.[﹣,0] 题型:未知 难度:其他题型

答案

A

点击查看函数图象知识点讲解,巩固学习

解析

该题暂无解析

考点

据考高分专家说,试题“设F(x)=f(x)+f(﹣.....”主要考查你对 [函数图象 ]考点的理解。 函数图象

定义:

点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。

函数图像的画法:

(1)描点法: 一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。 (2)用函数的性质画图 一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。 (3)通过图像变换画图 (一)平移变化: Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到. (二)对称变换: Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到; Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到; Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到; Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.

函数图像的判断:

这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。

常用结论: (1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。  

本文发布于:2023-02-04 21:26:03,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/404327.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   向量   区间   图象   单调
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图