题文
已知函数f(x)=ax+1,x≤0log2x,x>0,则下列关于函数y=f(f(x))+1的零点个数的判断正确的是( )A.当a>0时,有4个零点;当a<0时,有1个零点B.当a>0时,有3个零点;当a<0时,有2个零点C.无论a为何值,均有2个零点D.无论a为何值,均有4个零点 题型:未知 难度:其他题型答案
分四种情况讨论.(1)x>1时,log2x>0,∴y=f(f(x))+1=log2(log2x)+1,此时的零点为2(2)0<x<1时,log2x<0,∴y=f(f(x))+1=alog2x+1,则a>0时,有一个零点,a<0时,没有零点,(3)若x<0,ax+1≤0时,y=f(f(x))+1=a2x+a+1,则a>0时,有一个零点,a<0时,没有零点,(4)若x<0,ax+1>0时,y=f(f(x))+1=log2(ax+1)+1,则a>0时,有一个零点,a<0时,没有零点,综上可知,当a>0时,有4个零点;当a<0时,有1个零点故选A点击查看函数的零点与方程根的联系知识点讲解,巩固学习
解析
2考点
据考高分专家说,试题“已知函数f(x)=ax+1,x≤0log.....”主要考查你对 [函数的零点与方程根的联系 ]考点的理解。 函数的零点与方程根的联系函数零点的定义:
一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。
函数零点具有的性质:
对于任意函数y=(x)只要它的图象是连续不间断的,则有:(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.(2)在相邻两个零点之间所有的函数值保持同号,
方程的根与函数的零点的联系:
方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点
本文发布于:2023-02-04 21:11:22,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/402308.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |