设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x

更新时间:2023-02-04 20:16:29 阅读: 评论:0

题文

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积. 题型:未知 难度:其他题型

答案

(1)π-4.      (2)4

点击查看函数的奇偶性、周期性知识点讲解,巩固学习

解析

解:(1)由f(x+2)=-f(x),得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,从而得f(π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×(×2×1)=4.

考点

据考高分专家说,试题“设f(x)是(-∞,+∞)上的奇函数,f.....”主要考查你对 [函数的奇偶性、周期性 ]考点的理解。 函数的奇偶性、周期性

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。 奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。  函数的周期性:

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。 周期函数定义域必是无界的。 (2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。 周期函数并非都有最小正周期,如常函数f(x)=C。

奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若:  (1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|  (2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| (3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| (4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a|  (5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|

本文发布于:2023-02-04 20:16:29,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/391726.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:图象   函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图