已知函数f=2x,且f=g+h,其中g为奇函数,h为偶函数.若不等式2a•g+h≥0对任意x∈[1,

更新时间:2023-02-04 19:31:31 阅读: 评论:0

题文

已知函数f(x)=2x(x∈R),且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是______. 题型:未知 难度:其他题型

答案

∵h(x)为定义在R上的偶函数,g(x)为定义在R上的奇函数∴g(-x)=-g(x),h(-x)=h(x)又∵由h(x)+g(x)=2x,h(-x)+g(-x)=h(x)-g(x)=2-x,∴h(x)=12(2x+2-x),g(x)=12(2x-2-x)不等式2ag(x)+h(2x)≥0在[1,2]上恒成立,化简为a(2x-2-x)+12(22x+2-2x)≥0,x∈[1,2]∵1≤x≤2∴2x-2-x>0令t=2-x-2x,整理得:a≥22x+2-2x2(2-x-2x)=(2x-2-x)2+22(2-x-2x)=12-x-2x+2-x-2x2=12t+1t=12(t+2t),则由-154≤t≤-32可知y=12(t+2t)在[-154,-32]单调递增∴当t=-32时,ymax=-1712因此,实数a的取值范围是a≥-1712故答案为a≥-1712

点击查看函数的奇偶性、周期性知识点讲解,巩固学习

解析

12

考点

据考高分专家说,试题“已知函数f(x)=2x(x∈R),且f(.....”主要考查你对 [函数的奇偶性、周期性 ]考点的理解。 函数的奇偶性、周期性

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。 奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。  函数的周期性:

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。 周期函数定义域必是无界的。 (2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。 周期函数并非都有最小正周期,如常函数f(x)=C。

奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若:  (1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|  (2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| (3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| (4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a|  (5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|

本文发布于:2023-02-04 19:31:31,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/382592.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:偶函数   函数   等式   若不   为奇
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图