题文
已知函数f(x)=ln2(1+x)-x21+x.(I)求函数f(x)的单调区间;(Ⅱ)若不等式(1+1n)n+a≤e对任意的n∈rmN*都成立(其中e是自然对数的底数).求a的最大值. 题型:未知 难度:其他题型答案
(Ⅰ)函数f(x)的定义域是(-1,+∞),f′(x)=2ln(1+x)1+x-x2+2x(1+x)2=2(1+x)ln(1+x)-x2-2x(1+x)2.设g(x)=2(1+x)ln(1+x)-x2-2x,则g'(x)=2ln(1+x)-2x.令h(x)=2ln(1+x)-2x,则h′(x)=21+x-2=-2x1+x.当-1<x<0时,h'(x)>0,h(x)在(-1,0)上为增函数,当x>0时,h'(x)<0,h(x)在(0,+∞)上为减函数.所以h(x)在x=0处取得极大值,而h(0)=0,所以g'(x)<0(x≠0),函数g(x)在(-1,+∞)上为减函数.于是当-1<x<0时,g(x)>g(0)=0,当x>0时,g(x)<g(0)=0.所以,当-1<x<0时,f'(x)>0,f(x)在(-1,0)上为增函数.当x>0时,f'(x)<0,f(x)在(0,+∞)上为减函数.故函数f(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).(Ⅱ)不等式(1+1n)n+a≤e等价于不等式(n+a)ln(1+1n)≤1.由1+1n>1知,a≤1ln(1+1n)-n.设G(x)=1ln(1+x)-1x,x∈(0,1],则G′(x)=-1(1+x)ln2(1+x)+1x2=(1+x)ln2(1+x)-x2x2(1+x)ln2(1+x).由(Ⅰ)知,ln2(1+x)-x21+x≤0,即(1+x)ln2(1+x)-x2≤0.所以G'(x)<0,x∈(0,1],于是G(x)在(0,1]上为减函数.故函数G(x)在(0,1]上的最小值为G(1)=1ln2-1.所以a的最大值为1ln2-1.点击查看函数的奇偶性、周期性知识点讲解,巩固学习
解析
2ln(1+x)1+x考点
据考高分专家说,试题“已知函数f(x)=ln2(1+x)-x2.....”主要考查你对 [函数的奇偶性、周期性 ]考点的理解。 函数的奇偶性、周期性函数的奇偶性定义:
偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。 奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。 函数的周期性:
(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。 周期函数定义域必是无界的。 (2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。 周期函数并非都有最小正周期,如常函数f(x)=C。
奇函数与偶函数性质:
(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。
注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.
2、函数的周期性 令a , b 均不为零,若: (1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a| (2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| (3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| (4)函数y = f(x) 存在 f(x + a) = ==> 函数最小正周期 T=|2a| (5)函数y = f(x) 存在 f(x + a) = ==> 函数最小正周期 T=|4a|
本文发布于:2023-02-04 19:21:51,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/380607.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |