设f=ax2+bx+1x+c为奇函数,且

更新时间:2023-02-04 19:21:48 阅读: 评论:0

题文

设f(x)=ax2+bx+1x+c(a>0)为奇函数,且|f(x)|min=22,数列{an}与{bn}满足如下关系:a1=2,an+1=f(an)-an2,bn=an-1an+1.(1)求f(x)的解析表达式;(2)证明:当n∈N+时,有bn≤(13)n. 题型:未知 难度:其他题型

答案

由f(x)是奇函数,得b=c=0,由|f(x)min|=22,得a=2,故f(x)=2x2+1x(2)an+1=f(an)-an2=2a2n+1a n-an2=a2n+12an,bn+1=an+1-1an+1+1=a2n+12an-1a2n+12an+1=a2n-2an+1a2n+2an+1=(an-1an+1)2=bn2∴bn=bn-12=bn-24═b2n-11,而b1=13∴bn=(13)2n-1当n=1时,b1=13,命题成立,当n≥2时∵2n-1=(1+1)n-1=1+Cn-11+Cn-12++Cn-1n-1≥1+Cn-11=n∴(13)2n-1<(13)n,即bn≤(13)n.

点击查看函数的奇偶性、周期性知识点讲解,巩固学习

解析

2

考点

据考高分专家说,试题“设f(x)=ax2+bx+1x+c(a>.....”主要考查你对 [函数的奇偶性、周期性 ]考点的理解。 函数的奇偶性、周期性

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。 奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。  函数的周期性:

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。 周期函数定义域必是无界的。 (2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。 周期函数并非都有最小正周期,如常函数f(x)=C。

奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若:  (1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|  (2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| (3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| (4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a|  (5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|

本文发布于:2023-02-04 19:21:48,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/380580.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   为奇   bx
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图