已知函数f对任意的实数x,y都有f=f+f+2y+1且f=1.若x∈N*,试求f的解析式;若x∈N

更新时间:2023-02-04 19:16:47 阅读: 评论:0

题文

已知函数f(x)对任意的实数x,y都有f(x+y)=f(x)+f(y)+2y(x+y)+1且f(1)=1.(1)若x∈N*,试求f(x)的解析式;(2)若x∈N*,且x≥2时,不等式f(x)≥(a+7)x-(a+10)恒成立,求实数a的取值范围. 题型:未知 难度:其他题型

答案

(1)令x=y=0,得f(0)=f(0)+f(0)+0+1,f(0)=-1,令y=1得,f(x+1)=f(x)+f(1)+2(x+1)+1=f(x)+2x+4,即f(x+1)-f(x)=2x+4,∴f(2)-f(1)=2×1+4,f(3)-f(2)=2×2+4,f(4)-f(3)=2×3+4,…f(x)-f(x-1)=2×(x-1)+4,累加得:f(x)-f(1)=2(1+2+3+4…+(x-1))+4(x-1)=x2+3x-4,又  f(1)=1,∴f(x)═x2+3x-3,x∈N*.(2)∵x≥2时,不等式f(x)≥(a+7)x-(a+10)恒成立,∴x2+3x-3≥(a+7)x-(a+10)恒成立,即 a≤x2-4x+7x-1=(x-1)2-2(x-1)+4x-1=(x-1)+4x-1-2,由基本不等式得 (x-1)+4x-1-2≥4-2=2 (当且仅当x=3时,等号成立),∴(x-1)+4x-1-2 的最小值是2,,∴a≤2

点击查看函数的奇偶性、周期性知识点讲解,巩固学习

解析

x2-4x+7x-1

考点

据考高分专家说,试题“已知函数f(x)对任意的实数x,y都有f.....”主要考查你对 [函数的奇偶性、周期性 ]考点的理解。 函数的奇偶性、周期性

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。 奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。  函数的周期性:

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。 周期函数定义域必是无界的。 (2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。 周期函数并非都有最小正周期,如常函数f(x)=C。

奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若:  (1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|  (2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| (3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| (4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a|  (5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|

本文发布于:2023-02-04 19:16:47,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/379115.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:都有   实数   函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图