已知函数f(x)=mx

更新时间:2023-02-04 19:16:36 阅读: 评论:0

题文

已知函数f(x)=mx-mx,g(x)=2lnx.(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.(Ⅲ)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围. 题型:未知 难度:其他题型

答案

(Ⅰ)m=2时,f(x)=2x-2x,f′(x)=2+2x2,f′(1)=4,切点坐标为(1,0),∴切线方程为y=4x-4;(Ⅱ)m=1时,令h(x)=f(x)-g(x)=x-1x-2lnx,h′(x)=1+1x2-2x=(x-1)2x2≥0,∴h(x)在(0,+∞)上为增函数,又h(1)=0,所以f(x)=g(x)在(1,+∞)内无实数根; (Ⅲ)不等式f(x)-g(x)<2恒成立,即mx-mx-2lnx<2恒成立,也就是m(x2-1)<2x+2xlnx恒成立,又x2-1>0,则当x∈(1,e]时,m<2x+2xlnxx2-1恒成立,令G(x)=2x+2xlnxx2-1,只需m小于G(x)的最小值,由G′(x)=(2+2lnx+2)(x2-1)-(2x+2xlnx)•2x(x2-1)2=-2(x2lnx+lnx+2)(x2+1)2,∵1<x≤e,∴lnx>0,∴当x∈(1,e]时G'(x)<0,∴G(x)在(1,e]上单调递减,∴G(x)在(1,e]的最小值为G(e)=4ee2-1,则m的取值范围是(-∞,4ee2-1).

点击查看函数的奇偶性、周期性知识点讲解,巩固学习

解析

2x

考点

据考高分专家说,试题“已知函数f(x)=mx-mx,g(x)=.....”主要考查你对 [函数的奇偶性、周期性 ]考点的理解。 函数的奇偶性、周期性

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。 奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。  函数的周期性:

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。 周期函数定义域必是无界的。 (2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。 周期函数并非都有最小正周期,如常函数f(x)=C。

奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若:  (1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a|  (2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| (3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| (4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a|  (5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|

本文发布于:2023-02-04 19:16:36,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/379055.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:函数   mx
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图