题文
已知函数f(x)=2x+alnx-2(a>0).(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围. 题型:未知 难度:其他题型答案
(I)由题意得,f(x)的定义域为(0,+∞),∵f′(x)=-2x2+ax,∴f′(1)=-2+a,∵直线y=x+2的斜率为1,∴-2+a=-1,解得a=1,所以f(x)=2x+lnx-2,∴f′(x)=-2x2+1x=x-2x2,由f′(x)>0解得x>2;由f′(x)<0解得0<x<2.∴f(x)的单调增区间是(2,+∞),单调减区间是(0,2)(II)依题得g(x)=2x+lnx+x-2-b,则g′(x)=-2x2+1x+1=x2+x-2x2.由g′(x)>0解得x>1;由g′(x)<0解得0<x<1.∴函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又∵函数g(x)在区间[1e,e]上有两个零点,∴g(1e)≥0g(e)≥0g(1)<0,解得1<b≤2e+e-1,∴b的取值范围是(1,2e+e-1].点击查看函数零点的判定定理知识点讲解,巩固学习
解析
2x2考点
据考高分专家说,试题“已知函数f(x)=2x+alnx-2(a.....”主要考查你对 [函数零点的判定定理 ]考点的理解。 函数零点的判定定理
函数零点存在性定理:
一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)
函数零点个数的判断方法:
(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.
本文发布于:2023-02-04 19:09:35,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/377302.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |