已知集合,.在区间上任取一个实数,求“”的概率;设为有序实数对与不一样),其中是从集合中任取的一个整数,是从集合中

更新时间:2023-02-04 19:03:41 阅读: 评论:0

题文

已知集合,.(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对(如有序实数对(2,3)与(3,2)不一样),其中是从集合中任取的一个整数,是从集合 中任取的一个整数,求“”的概率 题型:未知 难度:其他题型

答案

(Ⅰ).(2).

点击查看集合的含义及表示知识点讲解,巩固学习

解析

(Ⅰ)易得,,是区间上的连续的实数,故属于几何概型,由几何概型的概率公式可得.(2)由于、是整数,故属于古典概型,列出所有可能出现的结果,找出满足“”的所有结果,二者相除即得所求概率.试题解析:(Ⅰ)∵ ∴      2分∵ ∴               4分设事件“”的概率为,这是一个几何概型,则概率       6分(2)因为,且,所以,基本事件共12个:,,,,,,,,,,,  9分设事件为“”,则事件中包含9个基本事件          11分事件的概率.                        12分

考点

据考高分专家说,试题“已知集合,.(1)在区间上任取一个实数,.....”主要考查你对 [集合的含义及表示 ]考点的理解。 集合的含义及表示

集合的概念:

1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集); 集合通常用大写的拉丁字母表示,如A、B、C、……。      元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系:  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集

常用数集及其表示方法: 

(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N*或N+ (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数的集合.记作R 

集合中元素的特性:

(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。(2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序.

易错点:(1)自然数集包括数0.         (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z

本文发布于:2023-02-04 19:03:41,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/376401.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:实数   是从   设为   整数   区间
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图