已知集合A={1,2,3,…,2n}.对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有

更新时间:2023-02-04 18:57:03 阅读: 评论:0

题文

已知集合A={1,2,3,…,2n(n∈N*)}.对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m,则称S具有性质P.(Ⅰ)当n=10时,试判断集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性质P?并说明理由.(II)若集合S具有性质P,试判断集合 T={(2n+1)-x|x∈S)}是否一定具有性质P?并说明理由. 题型:未知 难度:其他题型

答案

(Ⅰ)当n=10时,集合A={1,2,3,,19,20},B={x∈A|x=10,11,12,,19,20}不具有性质P.因为对任意不大于10的正整数m,都可以找到集合B中两个元素b1=10与b2=10+m,使得|b1-b2|=m成立.集合C={x∈A|x=3k-1,k∈N*}具有性质 P.因为可取m=1<10,对于该集合中任意一对元素c1=3k1-1,c2=3k2-1,k1,k2∈N*都有|c1-c2|=3|k1-k2|≠1.(Ⅱ)若集合S具有性质P,那么集合T={(2n+1)-x|x∈S}一定具有性质P.首先因为T={(2n+1)-x|x∈S},任取t=(2n+1)-x0∈T,其中x0∈S,因为 S⊆A,所以,x0∈{1,2,3,,2n},从而,1≤(2n+1)-x0≤2n,即t∈A,所以T⊆A.由S具有性质P,可知存在不大于n的正整数m,使得对S中的任意一对元素s1,s2,都有|s1-s2|≠m,对上述取定的不大于n的正整数m,从集合T={(2n+1)-x|x∈S}中任取元素t1=2n+1-x1,t2=2n+1-x2,其中,x1,x2∈S,都有|t1-t2|=|x1-x2|; 因为 x1,x2∈S,所以有|x1-x2|≠m,即|t1-t2|≠m,所以集合T={(2n+1)-x|x∈S}具有性质P.

点击查看集合的含义及表示知识点讲解,巩固学习

解析

该题暂无解析

考点

据考高分专家说,试题“已知集合A={1,2,3,…,2n(n∈.....”主要考查你对 [集合的含义及表示 ]考点的理解。 集合的含义及表示

集合的概念:

1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集); 集合通常用大写的拉丁字母表示,如A、B、C、……。      元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系:  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集

常用数集及其表示方法: 

(1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N*或N+ (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数的集合.记作R 

集合中元素的特性:

(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。(2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序.

易错点:(1)自然数集包括数0.         (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z

本文发布于:2023-02-04 18:57:03,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/374481.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:都有   子集   元素   正整数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图