题文
定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图像与f(x)的图像重合,设a>b>0,给出下列不等式: ①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)点击查看分段函数与抽象函数知识点讲解,巩固学习
解析
用特值法,根据题意,可设f(x)=x,g(x)=|x|,又设a=2,b=1,则f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3.g(b)-g(-a)=g(1)-g(-2)=1-2=-1. ∴f(a)-f(-b)>g(1)-g(-2)=1-2=-1.又f(b)-f(-a)=f(1)-f(-2)=1+2=3. g(a)-g(-b)=g(2)-g(1)=2-1=1,∴f(b)-f(-a)=g(a)-g(-b).即①与③成立.考点
据考高分专家说,试题“定义在区间(-∞,+∞)的奇函数f(x).....”主要考查你对 [分段函数与抽象函数 ]考点的理解。 分段函数与抽象函数分段函数:1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的; 分段函数是一个函数,定义域、值域都是各段的并集。 抽象函数:
我们把没有给出具体解析式的函数称为抽象函数; 一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。
知识点拨:
1、绝对值函数去掉绝对符号后就是分段函数。 2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。 3、分段函数的处理方法:分段函数分段研究。
本文发布于:2023-02-04 18:22:55,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/366088.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |