题文
设f(x)是定义在R上的函数,对任意x,y∈R有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4;(1)求f(1),f(4)的值;(2)判断并证明f(x)的单调性;(3)若关于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整数为2,求实数a的取值范围. 题型:未知 难度:其他题型答案
(1)由题意可得f(3)=f(2)+f(1)-1=4,f(2)=2f(1)-1∴3f(1)-2=4,即f(1)=2,f(2)=3,f(3)=4,f(4)=2f(2)-1=5(2)由(1)可得函数为单调递增的函数证明如下:设a>0,则x+a>x∵由题意可得,当x>0时,f(x)>1∴f(a)>1由已知可得,f(x+a)-f(x)=f(x)+f(a)-f(x)-1=f(a)-1>0∴f(x+a)>f(x)由函数的单调性的定义可知函数单调递增(3)∵f(|x|x+a2x+a)<f(f(4)•x)由(2)中函数单调递增且f(4)=5可得|x|x+a2x+a<5x当x>0可得,x2+(a2-5)x+a<0的解集中的最大整数为2令g(x)=x2+(a2-5)x+a,则g(3)≥0g(2)≤0即3a2+a-6≥02a2+a-6≤0解可得-1+736≤a≤1当x<0时,x2+(5-a2)x-a>0的解集中的最大整数为2,此时不符合题意点击查看分段函数与抽象函数知识点讲解,巩固学习
解析
g(3)≥0g(2)≤0考点
据考高分专家说,试题“设f(x)是定义在R上的函数,对任意x,.....”主要考查你对 [分段函数与抽象函数 ]考点的理解。 分段函数与抽象函数分段函数:1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的; 分段函数是一个函数,定义域、值域都是各段的并集。 抽象函数:
我们把没有给出具体解析式的函数称为抽象函数; 一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。
知识点拨:
1、绝对值函数去掉绝对符号后就是分段函数。 2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。 3、分段函数的处理方法:分段函数分段研究。
本文发布于:2023-02-04 18:22:49,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/366041.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |