题文
已知二次函数满足且.(Ⅰ)求的解析式.(Ⅱ)在区间上, 的图象恒在的图象上方 试确定实数的范围. 题型:未知 难度:其他题型答案
(Ⅰ)f(x)=x2-x+1. (Ⅱ)m<-1.点击查看一次函数的性质与应用知识点讲解,巩固学习
解析
本试题主要是考查了函数的性质和函数的解析式的运用(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.即2ax+a+b=2x,(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1, 1]上恒成立.设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减.那么可得。解: (Ⅰ)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.即2ax+a+b=2x,所以,∴f(x)=x2-x+1. (Ⅱ)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1, 1]上恒成立.设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减.故只需g(1)>0,即12-3×1+1-m>0,解得m<-1.考点
据考高分专家说,试题“已知二次函数满足且.(Ⅰ)求的解析式.(.....”主要考查你对 [一次函数的性质与应用 ]考点的理解。 一次函数的性质与应用一次函数的定义和图像:(1)定义:一般地,形如y=kx+b(k、b为常数,k≠0)的函数,叫做一次函数,其中正比例函数是一次函数的特殊情况。 (2)图象:一次函数的图像是一条直线,过(0,b),(,0)两点,其中k叫做该直线的斜率,b叫做该直线在y轴上的截距。
一次函数的性质: (1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小。(3)当b=0时,一次函数变为正比例函数,是奇函数;当b≠0时,它既不是奇函数也不是偶函数。(4)k的大小表示直线与x轴的倾斜程度一次函数y=kx+b(k不等于零)的图像:
当k>0时,若b=0,则图像过第一、三象限;若b>0,则图像过第一、二、三象限;若b<0,则图像过第一、三、四象限。
当k>0时,若b=0,则图像过第二、四象限;若b>0,则图像过第一、二、四象限;若b<0,则图像过第二、三、四象限。
应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
本文发布于:2023-02-04 17:16:40,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/353823.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |