题文
(14分)如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接。现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点。已知A点距水平面的高度h=0.8m,B点距C点的距离L=2.0m。(滑块经过B点时没有能量损失,g=10m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0s时速度的大小。
题型:未知 难度:其他题型
答案
(1) (2) (3)
点击查看匀变速直线运动知识点讲解,巩固学习
解析
(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为,设滑块在斜面上运动的加速度大小为: 1分 2分解得: 1分(2)滑块在水平面上运动的加速度大小为 1分 2分解得: 1分(3)滑块在斜面上运动的时间为 1分得 1分由于,故滑块已经经过B点,做匀减速运动时间为 1分设t=1.0s时速度大小为 2分解得: 1分点评:本题第一问学生也可用动能定理求滑块的最大速度,解题时分段去求。
考点
据考高分专家说,试题“(14分)如图所示,倾角为30°的光滑斜.....”主要考查你对 [匀变速直线运动 ]考点的理解。
匀变速直线运动
定义:在任意相等的时间内速度的变化相等的直线运动,即加速度恒定的变速直线运动叫匀变速直线运动。
特点:a=恒量。
匀变速直线运动规律(基本公式):速度公式:v=位移公式:x=速度平方公式:位移公式:x=速度平方公式:位移—平均速度关系式:x=
匀变速直线运动的几个重要推论:
在任意两个连续相等的时间间隔内通过的位移之差为一恒量,即:SⅡ-SⅠ=SⅢ-SⅡ=…=SN-SN-1=ΔS=匀变速直线运动的几个重要推论:
在任意两个连续相等的时间间隔内通过的位移之差为一恒量,即:SⅡ-SⅠ=SⅢ-SⅡ=…=SN-SN-1=ΔS=(此公式可以用来判断物体是否做匀变速直线运动)。进一步推论:Sn+m-Sn=,其中Sn、Sn+m分别表示第n段和第(n+m)段相等时间内的位移,T为相等时间间隔。某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即。某段位移中点的瞬时速度等于初速度v0和末速度v平方和一半的平方根,即vs/2=,其中Sn、Sn+m分别表示第n段和第(n+m)段相等时间内的位移,T为相等时间间隔。某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即。某段位移中点的瞬时速度等于初速度v0和末速度v平方和一半的平方根,即vs/2=。null
null
null
本文发布于:2023-02-04 16:38:31,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/349541.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |