题文
已知函数f(x)=x2+ (x≠0).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性 题型:未知 难度:其他题型答案
(1)函数f(x)既不是奇函数也不是偶函数.(2) f(x)在[2,+∞)上是单调递增函数.点击查看指数函数模型的应用知识点讲解,巩固学习
解析
(1)当a=0时,f(x)=x2,f(-x)=f(x),函数是偶函数. 3分当a≠0时,f(x)=x2+x≠0,常数a∈R), 5分取x=±1,得f(-1)+f(1)=2≠0;f(-1)-f(1)=-2a≠0,∴f(-1)≠-f(1),f(-1)≠f(1).∴函数f(x)既不是奇函数也不是偶函数. 6分(2)若f(1)=2,即1+a=2,解得a=1,这时f(x)=x2+.任取x1,x2∈[2,+∞),且x1指数型复合函数的性质的应用:
(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.
本文发布于:2023-02-04 16:34:58,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/348575.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |