题文
已知函数(Ⅰ)当时, 求函数的单调增区间;(Ⅱ)求函数在区间上的最小值;(Ⅲ) 在(Ⅰ)的条件下,设,证明:.参考数据:. 题型:未知 难度:其他题型答案
(Ⅰ) (Ⅱ)(Ⅲ)用放缩法证明.点击查看指数函数模型的应用知识点讲解,巩固学习
解析
(Ⅰ)当时,,或。函数的单调增区间为 (Ⅱ) ,当,单调增。当,单调减. 单调增。当,单调减, (Ⅲ)令, , 即 ,, 点评:本题考查函数的单调区间和函数的最小值的求法,而利用单调性证明不等式是难题.解题时要认真审题,仔细解答.考点
据考高分专家说,试题“已知函数(Ⅰ)当时, 求函数的单调增区间.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。指数型复合函数的性质的应用:
(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.
本文发布于:2023-02-04 16:34:58,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/fan/89/348571.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |