已知,且。求与的关系;若在其定义域内为增函数,求的取值范围;证明:(提示:需要时可利用恒等式:)

更新时间:2023-02-04 16:34:19 阅读: 评论:0

题文

(本题满分15分)已知,且(为自然对数的底数)。(1)求与的关系;(2)若在其定义域内为增函数,求的取值范围;(3)证明:(提示:需要时可利用恒等式:) 题型:未知 难度:其他题型

答案

解:(1)由题意(2)由(1)知:(x>0)令h(x)=x2-2x+.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立.即x2-2x+≥0上恒成立又所以(3)证明:证:lnx-x+1≤0  (x>0),设.当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即lnx-x+1≤0,∴lnx≤x-1.②由①知lnx≤x-1,又x>0,

点击查看指数函数模型的应用知识点讲解,巩固学习

解析

考点

据考高分专家说,试题“(本题满分15分)已知,且(为自然对数的.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.

本文发布于:2023-02-04 16:34:19,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/348387.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:恒等式   可利用   函数   定义   提示
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图