已知二次函数满足条件:①是的两个零点;②的最小值为求函数的解析式;设数列的前项积为,且,,求数列的前项和在的条件下,当

更新时间:2023-02-04 16:34:02 阅读: 评论:0

题文

(本题满分12分)已知二次函数满足条件:①是的两个零点;②的最小值为(1)求函数的解析式;(2)设数列的前项积为,且 ,,求数列的前项和(3)在(2)的条件下,当时,若是与的等差中项,试问数列中第几项的值最小?并求出这个最小值。 题型:未知 难度:其他题型

答案

解:(1)由题意知:解得,故(2)因,当时,,所以,又,满足上式,当时,,当且时,数列是等比数列,故数列的前项和(3)若是与的等差中项,则,从而,得,因是关于的减函数,所以当,即时,随的增大而减小,此时最小值为,当,即时,随的增大而增大,此时最小值为,又,所以,即数列中最小,为

点击查看指数函数模型的应用知识点讲解,巩固学习

解析

考点

据考高分专家说,试题“(本题满分12分)已知二次函数满足条件:.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.

本文发布于:2023-02-04 16:34:02,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/348267.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:前项   数列   函数   条件下   零点
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图