设为定义在上的奇函数,当时,,则的值为( ) A.-3B.-1C.1D.3

更新时间:2023-02-04 16:34:00 阅读: 评论:0

题文

设为定义在上的奇函数,当时,(为常数),则的值为(    ) A.-3B.-1C.1D.3 题型:未知 难度:其他题型

答案

A

点击查看指数函数模型的应用知识点讲解,巩固学习

解析

分析:由f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),知f(0)=1+b=0,解得b=-1所以当x<0时,f(x)=-2-x+2x+1,由此能求出f(-1).解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(x)=2x+2x-1.当x<0时,-f(x)=2-x+2(-x)-1,∴f(x)=-2-x+2x+1,∴f(-1)=-2-2+1=-3.故答案为:-3.选A。点评:本题考查函数性质的应用,是基础题.解题时要认真审题,注意奇函数的性质的灵活运用.

考点

据考高分专家说,试题“设为定义在上的奇函数,当时,(为常数),.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.

本文发布于:2023-02-04 16:34:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/348243.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:设为   在上   值为   函数   定义
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图