(11)函数f的定义域为R,f=2,对任意,f’>2,则f(x)>2x+4的解集为A.(

更新时间:2023-02-04 16:33:54 阅读: 评论:0

题文

(11)函数f(x)的定义域为R,f(-1)=2,对任意,f’(x)>2,则f(x)>2x+4的解集为( )A.(-1,1)B.(-1,+)C.(-,-1)D.(-,+) 题型:未知 难度:其他题型

答案

B

点击查看指数函数模型的应用知识点讲解,巩固学习

解析

分析:构建函数F(x)=f(x)-(2x+4),由f(-1)=2得出F(-1)的值,求出F(x)的导函数,根据f′(x)>2,得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集.解:设F(x)=f(x)-(2x+4),则F(-1)=f(-1)-(-2+4)=2-2=0,又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,即F(x)在R上单调递增,则F(x)>0的解集为(-1,+∞),即f(x)>2x+4的解集为(-1,+∞).故答案为:B

考点

据考高分专家说,试题“(11)函数f(x)的定义域为R,f(-.....”主要考查你对 [指数函数模型的应用 ]考点的理解。 指数函数模型的应用 指数函数模型的定义: 恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.(2)对于形如一类的指数型复合函数,有以下结论:①函数的定义域与f(x)的定义域相同;②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;③当a>l时,函数与函数f(x)的单调性相同;当O与函数f(x)的单调性相反.

本文发布于:2023-02-04 16:33:54,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/fan/89/348188.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:定义域   函数
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图